Boundary Expansions for Spline Interpolation

By W. D. Hoskins

Abstract

An explicit method is given for deriving the formulae for derivatives of the spline of order $m+1$ at two boundaries $x=a, x=b$ in terms of known function values and computed m th derivatives of the spline.

1. Introduction. General formulae for computing the spline $s(x)$ of degree $m+1$ on a partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$ of the interval $[a, b$] have been considered with various types of boundary conditions in several previous papers (Ahlberg, Nilson and Walsh [1], Späth [5]).

However, the spline interpolation problem may always be formulated as the solution of a matrix equation where the matrix of coefficients is of band type with width $m+1$. The special case of periodic boundary conditions yields a predominantly band matrix which is of circulant form (Hoskins and King [3]).

In the case when $s^{(q)}\left(x_{i}\right)(j=0, n ; q=1,2, \cdots, m-1)$ or, more generally, when linear combinations of these quantities are given, or, alternatively, when they merely require to be determined from the computed set of m th derivatives, it is not apparent from the development by Ahlberg et al. [1, pp. 124-132] that they may be obtained explicitly for all forms of boundary conditions solely in terms of values of the function and m th derivatives. Further, the explicit form for these conditions is such that the band structure of the matrix of coefficients may be retained.
2. Development of the Expansions. The polynomial spline $s(x)$ of degree $m+1$ has as its $(m+1)$ st derivative

$$
\begin{equation*}
s^{(m+1)}(x)=\frac{s_{i}^{(m)}-s_{i-1}^{(m)}}{h_{i}}, \quad j=1,2, \cdots, n \tag{2.1}
\end{equation*}
$$

where $x_{i-1} \leqq x \leqq x_{i}, h_{i}=x_{i}-x_{i-1}$ and $s_{i}^{(m)}$ denotes the m th derivative of $s(x)$ evaluated at $x=x_{i}$. Now the function $s(x)$ can be represented over the complete range $\left[x_{0}, x_{n}\right]$ in the form

$$
\begin{equation*}
s(x)=\sum_{k=0}^{m} \frac{x^{k}}{k!} s_{0}^{(k)}+\sum_{t=0}^{n-1} \frac{d_{t}}{(m+1)!}\left(x-x_{t}\right)_{+}^{m+1} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
z_{+} & =z, & & z \geqq 0, \\
& =0, & & z<0
\end{aligned}
$$

(Powell [4]). Using Eqs. (2.1) and (2.2) it is seen that

$$
\begin{align*}
d_{0} & =\left(s_{1}^{(m)}-s_{0}^{(m)}\right) / h_{1}, \quad \text { and } \tag{2.3}\\
d_{t} & =\left(s_{t+1}^{(m)}-s_{t}^{(m)}\right) / h_{t+1}-\left(s_{t}^{(m)}-s_{t-1}^{(m)}\right) / h_{t}, \quad 0<t<n-1,
\end{align*}
$$

and, if Eq. (2.2) is expanded about the values $x_{k}(k=1,2, \cdots, m-1)$, then

$$
s_{k}=\sum_{i=0}^{m} \frac{x_{k}^{i}}{i!} s_{0}^{(i)}+\sum_{i=0}^{k-1} \frac{d_{i}}{(m+1)!}\left(x_{k}-x_{i}\right)^{m+1}
$$

with slight rearrangement producing

$$
\begin{align*}
& \sum_{i=1}^{m-1} \frac{x_{k}^{i}}{i!} s_{0}^{(i)}=s_{k}-s_{0}-\sum_{i=0}^{k-1} \frac{\left(x_{k}-x_{i}\right)^{m+1}}{(m+1)!} \cdot d_{i}-\frac{x_{k}^{m}}{m!} s_{0}^{(m)} \tag{2.4}\\
& k=1,2, \cdots, m-1 .
\end{align*}
$$

The complete set of Eqs. (2.4) may be written in matrix form as

$$
\begin{equation*}
A \mathbf{v}=\mathrm{b} \tag{2.5}
\end{equation*}
$$

where $A=\left\{x_{i}^{i}\right\}$ and is $(m-1) \times(m-1), \mathbf{v}=\left\{s_{0}^{\prime}, s_{0}^{\prime \prime} / 2!, \cdots, s_{0}^{(m-1)} /(m-1)!\right\}^{T}$ and the vector b has elements

$$
b_{k}=s_{k}-s_{0}-\sum_{i=0}^{k-1} \frac{\left(x_{k}-x_{i}\right)^{m+1}}{(m+1)!} \cdot d_{i}-\frac{x_{k}^{m}}{m!} s_{0}^{(m)}, \quad k=1,2,3, \cdots, m-1
$$

The quantities d_{i} appearing on the right-hand side of Eq. (2.5) are of course already given from Eqs. (2.3) in terms of m th derivatives, hence v defined as the solution of (2.5) gives the required expansions for $s_{0}^{(\alpha)}(q=1,2, \cdots, m-1)$.

The coefficient matrix A is a special form of the Vandermonde matrix and possesses a well-known inverse (Gregory and Karney [2]) so that explicit expansions for the elements of v could be obtained if desired. However, from the computing aspect it is more economical to work directly with the system of Eqs. (2.5) when numerical values for the elements of v are required. In particular, if the partition of $\left[x_{0}, x_{n}\right]$ is uniform and $x_{i}=x_{0}+i h$ where $h=\left(x_{n}-x_{0}\right) / n$ and $i=0,1,2, \cdots, n$, then Eq. (2.5) can be simplified by associating the appropriate powers of h with the derivatives appearing in v , and the matrix A becomes $A=\left\{i^{i}\right\}$. In this case, the vector v is easily obtained by solving the equivalent set of equations

$$
\begin{equation*}
U \mathbf{v}=L \mathbf{b} \tag{2.6}
\end{equation*}
$$

where $U=\left\{\Delta^{i} 0^{i}\right\}$ and $L=\left\{(-1)^{i+i}\binom{i}{i}\right\}$, with $\Delta^{i} 0^{i}$ representing the i th difference of $\left.i^{i}\right|_{i=0}$. Equation (2.6) is such that U is an upper triangular matrix and thus the determination of v is easily effected.

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada

1. J. H. Ahlberg, E. N. Nilson \& J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York, 1967. MR 39 \#684.
2. R. T. Gregory \& D. L. Karney, A Collection of Matrices for Testing Computational Algorithms, Wiley, New York, 1969. MR 40 \#6752.
3. W. D. Hoskins \& P. R. King, "Interpolation using periodic splines of odd order with equi-spaced knots," Comput. J., v. 15, 1972, pp. 283-284.
4. M. J. D. Powell, On Best L L Spline Approximations, AERE Report TP264, Harwell, England.
5. H. Späth, Die Numerische Berechnung von interpolierenden Spline-Funktionen mit Blockunterrelaxation, Universität (TH) Karlsruhe, Karlsruhe, 1969. MR 42 \#8659.
